admin 25.10.2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers.

The center said the technology has been successfully tested by one of Russia’s largest banks, Gazprombankm, and that the center is now working to expand the capability to other Russian and international financial services organizations.

The announcement was greeted with a wait-and-see attitude by industry observers, including HPC analyst Steve Conway, of Hyperion (formerly IDC), who noted that, given the complexity of the use case, neither the press release nor the white paper issued by the Russian Quantum Center provided enough technical detail to validate its announcement.

“As far as the use case goes,” Conway said, “it’s pretty universally acknowledged that one of the key early uses for quantum computing is going to be for cyber defense, so that’s no surprise. Efforts like that are underway around the world. It’s difficult to assess this one in comparison with any other without having any technical details about what they’re doing.”

Addison Snell, CEO of Intersect 360 Research, said, “It is still early in the development of quantum computing and difficult to compare the efficacy of the Russians’ approach versus efforts we have seen from companies like D-Wave and IBM. The most important point is that Russia, which already has capable supercomputing vendors, such as RSC and T-Platforms, is now part of the quantum computing discussion as well.”

The Russian Quantum Center said it secures the blockchain by combining quantum key distribution (QKD) with post-quantum cryptography, making it essentially “un-hackable,” according to the center. The technology creates special blocks that are signed by quantum keys rather than the traditional digital signatures, the center said, with the quantum keys generated by a QKD network.

QKD networks have become increasingly common around the world, particularly in the financial sector. China, Europe and the United States have existing QKD networks used for smart contracts, financial transactions and classified information.

Quantum computing holds the promise of delivering performance exponentially more powerful than today’s computers, but its commercial realization remains years away. It’s also seen as a major threat when in the hands of hackers.

Google appears to be at the forefront of this work – the company’s quantum-AI team has set for itself the goal of making a quantum annealer with 100 qubits by the end of this year. A qubit, or quantum bit, is the quantum computing equivalent of the classical bit. Conway pointed out that the Russian Quantum Center’s claims would require sophisticated quantum computing capabilities.

“It’s interesting because the challenges with creating a quantum computer increase dramatically with the number of qubits,” said Conway. “It’s a whole lot easier to do something with a couple of qubits than it is with hundreds or thousands of qubits. But in fact if you want to get serious about this you have to get to the thousands of qubits… I’d be surprised if this were in the thousands of qubits range, which is what you’d really need for serious cybersecurity.”

Subscribe to HPCwire’s Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

It’s no secret memory-to-processor bottlenecks have become a chief obstacle in boosting computer performance. Recent efforts to place DRAM onto chip packages have helped mitigate the problem, but the overhead required Read more…

I’m really looking forward to returning to Denver this year and I’ll admit that I have a real soft spot for Blue Bear. As a regular SC attendee (and at times exhibitor) over the last twelve years or more (ok my memor Read more…

Cooling is an ongoing challenge in all of computing. Now, a group of researchers from Purdue University have devised an ‘intra-chip’ cooling technique that hits the 1000-watt per square centimeter target singled out by Read more…

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Cray, which has been seeking new points of entry for its supercomputing technology into the cloud enterprise arena, has struck a partnership with Microsoft and its enormous Azure customer base, a deal that Cray believes Read more…

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

For the first time since AMD’s ill-fated launch of Bulldozer the answer to the question, ‘Which CPU will be in my next HPC system?’ doesn’t have to be ‘Whichever variety of Intel Xeon E5 they are selling when we procure’. Read more…

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the “Aurora” supercompute Read more…

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue� Read more…

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work… Read more…

This week Cray announced that it is picking up Seagate’s ClusterStor HPC storage array business for an undisclosed sum. “In short we’re effectively transitioning the bulk of the ClusterStor product line to Cray,” said CEO Peter Ungaro. Read more…

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…